BZOJ1420: Discrete Root && BZOJ1319
BZOJ3118: Orz the MST

BZOJ1061: [Noi2008]志愿者招募 线性规划之--构造初始可行解

shinbokuow posted @ Aug 21, 2015 03:30:38 PM in BZOJ with tags 线性规划 单纯形 , 1707 阅读

首要思路是构造辅助线性规划,若最优值为0则删除辅助变量得到存在初始可行解线性规划.

具体看代码吧.

#include<cstdio>
#include<cctype>
#include<cstring>
#include<climits>
#include<iostream>
#include<algorithm>
using namespace std;
 
#define inf 0x3f3f3f3f
struct Linear_Programming{
    static const int N=10010;
    static const int M=1010;
    int n,m,A[M][N],b[M],c[N],v,B[M],nB[N];
    int _c[N],_v,Bins[N+M],nBins[N+M],_nB[N];
    inline void pivot(int l,int e){
        int i,j;
        for(i=1;i<=n;++i)
            if(i!=e)
                A[l][i]/=A[l][e];
        b[l]/=A[l][e];
        A[l][e]=1/A[l][e];
        for(i=1;i<=m;++i)
            if(i!=l&&A[i][e]!=0){
                for(j=1;j<=n;++j)
                    if(j!=e)
                        A[i][j]-=A[i][e]*A[l][j];
                b[i]-=A[i][e]*b[l];
                A[i][e]*=-A[l][e];
            }
        for(i=1;i<=n;++i)
            if(i!=e)
                c[i]-=c[e]*A[l][i];
        v+=c[e]*b[l];
        c[e]*=-A[l][e];
        swap(B[l],nB[e]);
    }
    inline int Simplex(){
        int i,j,l,e,lim;
        while(1){
            for(e=0,i=1;i<=n;++i)
                if(c[i]>0){
                    e=i;
                    break;
                }
            if(!e)
                return v;
            for(lim=inf,i=1;i<=m;++i)
                if(A[i][e]>0&&lim>b[i]/A[i][e]){
                    l=i;
                    lim=b[i]/A[i][e];
                }
            if(lim==inf)
                return inf;
            pivot(l,e);
        }
    }
    inline bool init(){
        int i,j,l,e,min_b=inf;
        for(l=0,i=1;i<=m;++i)
            if(b[i]<min_b){
                min_b=b[i];
                l=i;
            }
        if(min_b>=0)
            return 1;
        nB[++n]=0;
        memcpy(_c,c,sizeof c);
        _v=v;
        memcpy(_nB,nB,sizeof nB);
        memset(c,0,sizeof c);
        v=0;
        c[n]=-1;
        for(i=1;i<=m;++i)
            A[i][n]=-1;
        pivot(l,n);
        if(Simplex()<0)
            return 0;
        else{
            for(i=1;i<=m;++i)
                if(B[i]==0){
                    for(j=1;j<=n;++j){
                        if(A[i][j]!=0)
                            pivot(i,j);
                        break;
                    }
                }
            for(i=1;i<=n;++i)
                if(nB[i]==0)
                    e=i;
            --n;
            for(i=e;i<=n;++i)
                nB[i]=nB[i+1];
            for(i=1;i<=m;++i)
                for(j=e;j<=n;++j)
                    A[i][j]=A[i][j+1];
            for(i=1;i<=n;++i)
                nBins[nB[i]]=i;
            for(i=1;i<=m;++i)
                Bins[B[i]]=i;
            memset(c,0,sizeof c);
            v=_v;
            for(i=1;i<=n;++i){
                if(nBins[_nB[i]])
                    c[nBins[_nB[i]]]+=_c[i];
                else{
                    v+=_c[i]*b[Bins[_nB[i]]];
                    for(j=1;j<=n;++j)
                        c[j]-=_c[i]*A[Bins[_nB[i]]][j];
                }
            }
            return 1;
        }
    }
}g;
 
int main(){
    int tim,typ;
    cin>>tim>>typ;
    int i,j;
    for(i=1;i<=tim;++i){
        scanf("%d",&g.b[i]);
        g.b[i]=-g.b[i];
    }
    int s,t,c;
    for(i=1;i<=typ;++i){
        scanf("%d%d%d",&s,&t,&c);
        for(j=s;j<=t;++j)
            g.A[j][i]=-1;
        g.c[i]=-c;
    }
    g.n=typ;
    g.m=tim;
    for(i=1;i<=g.n;++i)
        g.nB[i]=i;
    for(i=1;i<=g.m;++i)
        g.B[i]=g.n+i;
    g.init();
    cout<<-g.Simplex()<<endl;
    return 0;
}
charlly 说:
Oct 06, 2022 12:46:00 PM

Those guys who have interest in programming can check this post here. You will find the solutions that you need in programming from here. gout in foot there is no doubt in it. Thank you so much for sharing all these with us !!


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter